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N U M E R I C A L  STUDY O F  T U R B U L E N T  F L O W  O F  P A R T L Y  

I O N I Z E D  A I R  IN A V I S C O U S  S H O C K  L A Y E R  

V. L. Kovalev and A. A. Krupnov UDC 533.6.011 

An effective method is developed for solving equations for a complete viscous shock layer based on global iterations 
for the longitudinal component of the pressure gradient and the shape of the leading shock wave. Algebraic models of 

turbulence for describing transitional and turbulent flow regimes in a chemically nonequilibrium complete viscous shock layer 

are analyzed. The resuks obtained are compared with those of actual experiments with entry of bodies into the atmosphere. 

Equations for a complete viscous shock layer (CVSL) [1-3] are currently used extensively in order to study supersonic 
continuous flow past smooth bodies by a viscous gas over a wide range of Reynolds numbers embracing flow from regimes 

with slip to regimes with formation of both a laminar and turbulent boundary layer at the body. Equations for CVSL follow 

from Navier-Stokes equations if the latter contain terms of the order O(1) and O(Re -1/2) and terms of the order O(Re -1) are 
ignored which are responsible for molecular transfer of mass, pulse, and energy along a coordinate line connected with the main 

flow direction. As boundary conditions for these equations at the outer boundary (shock wave sought) use is made of 
generalized Rankine-Hugoniot cor~ditions which take account the effects of molecular transfer in the zone of a jump in 

thickening with the same asymptotic order of accuracy with respect to Reynolds number Re as for the CVSL equations 

themselves. Boundary conditions at the body are similar to those for boundary layer equations. 
Difficulties in solving CVSL equations by stepping methods along the main flow direction are connected with the fact 

that in them all of the terms of Euler equations are considered, in particular terms responsible for transfer of perturbations 

upwards through the flow in subsonic flow regions (longitudinal components of the pressure gradient). For this reason stepping 
solution methods are incorrect [4]. Additional difficulties arise in solving the problem of supersonic flow past long thin bodies 
since int his case the shock wave thickens and the thickness of the subsonic region around the body increases. It is noted that 

with flow past long thin bodies at a sufficient distance from the critical point a turbulent flow regime is possible even with 

moderate Reynolds numbers in an approach flow. 
In this work an effective method is developed for solving equations for a complete viscous shock layer on the basis 

of global iterations for the longitudinal component of the pressure gradient and the shape of the leading shock wave. The new 
method is suggested and realized for determining them in each global iteration making it possible to consider the effect of all 

of the points along the coordinate line on the transfer of perturbations upwards through the flow. Here with a high order of 

approximation it is not necessary to use special difference equations at the break point for curvature of the body surface as in 

[3, 5, 61. 
Combined solution of all of the equations for a viscous shock layer in contrast to their successive solution in [1] made 

it possible to improve markedly the stability of the numerical algorithm and thereby to study for long thin bodies over a wide 
range of dimensionless parameters of the problem. This approach also makes it possible to use a computer with parallel 
processors which markedly saves computation time. 

In studying flow of a dissociated and partly ionized multicomponent mixture with different diffusion properties for the 

components an algorithm is used which does not require prior resolution of Stefan-Maxwell relationships (equations of 
component transfer) with respect to diffusion flows. This also reduces the amount of computation since the calculation time 

becomes proportional to the number of components and not the square of it. 

The method suggested makes it possible in a unique way to calculate flow in subsonic and supersonic flow regions, 

it is much more economic with respect to computation time and the computer memory used compared with standard methods. 
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In order to determine integral characteristics such as heat flow and pressure at the body with an accuracy of  1% not more than 

two to three global iterations are required. Use of algebraic turbulence models makes it possible to study laminar, transitional, 

and turbulent flow over the whole range of velocities for occurrence of dissociation and ionization reactions (from frozen to 

equilibrium). 

We consider supersonic flow past the windward surface of an axisymmetric or plane body with continuous or 

discontinuous curvature of  the surface. The set of equations and boundary conditions for the CVSL initially written in a 

curvilinear orthogorial coordinate system (x, y) naturally connected with the body are written in variables of the Dorodnitsyn 

type (~, ~7) [2]. In the system obtained physical coordinate y is considered as the function sought y = y(~, 7/)- The equation 

for y is a result of  equations of  state, continuity, and the projection of  the equation for pulses of the normal .  As boundary 

conditions for y we use y = 0 at the body and a transformed condition for pressure in the shock wave. 

In the first global iteration the slope of the shock wave was prescribed analytically [2]: 

1 dy, c(q(2c - 1 ) / c  ~ + tg2a - -  t ga ) ,  fl, = t5 - a.  t g ~ -  Hi dx - -  

Here B and ~x are slopes of  the shock wave and body surface to the axis of syimnetry; H I is Lame coefficient. For function 

c = c(~) a semi-empirical differential equation is suggested 

dc I - k 
- - - ' c q 2 c -  1, 

dx 2R 

and use is made of approximation equations [7] for shock wave departure and curvature at a critical point, conditions of shock 

wave curvature at the contact point of the sphere-cone,  and the tendency of its slope at infinity towards the Mach angle; 

parameter k lies within the limits from 0.5 to 1 (for a sphere it equals the ratio of shock wave and body curvature with cx = 

0). The longitudinal component of  the pressure gradient in first global iteration was approximated as 

ap pi _ #- I  (.~.) o 
,~ _ o.,~. r + (,o - 1 )  a p  , 

where ~o= -yM2/[1 + (-y - 1)M2I in the supersonic flow region [8] and o~ = 1 in the supersonic flow region. Here 3' is the 

ratio of  specific heat capacities; M is local Math number; (#plOO ~ is the initial distr~ution of  #p/0f. 

In order to calculate new values of igp/O~ and Oys/O~ with transition to the next global iteration the distribution of 

pressure along the coordinate line 71 = const and departure of the shock wave smoothed by means of  minimizing the functional 

~ IlulX 

f [(~o - ~,o? + ,t*~ *laf, 
0 

666 



Q, mW/cm 2 
�9 - ~ .  . 

/ 

o,o~ ] 

.o,o, :LL/:/ 
, o  Jr :.::! 

' ' ' ' o ,e '  ' ' ' ' o , 4 '  ' '  ' ' o , r  

a, W/cm 2 

0 . . . . . . . . .  ~b . . . . . . .  ~0 . . . . . . . . . . . . . . . . . . .  so  = / R  

Fig. 3 Fig. 4 

where 'P0 and ~o are any of the functions before and after minimization; a period means derivative with respect to longitudinal 

coordinate; X is smoothing parameter [9]. With boundary conditions ~o(0) = r ~O(~max) = (P0(~max) the extreme problem 

is reduced to a set of two differential equations of the first order: 

ar a~o 
= - = 

which was solved a difference method of the fourth order of approximation accuracy [10]. It is essential here smoothing fields 

~o and ~b are found simultaneously. This method for calculating ,# effectively considers propagation of  perturbations upwards 

through the flow since in new values of ~b there is consideration of the effect of all of the points along each coordinate line 71 

= const. In addition, at the point of body surface curvature discontinuity with a high order of  approximation for the shape of 

the shock wave and the projection of the pressure gradient it is not necessary to use special difference equations as in [3, 5, 

6] if one of  the calculation points is placed at this point and the change in pitch is considered on coordinate lines (d~ = 

d~0-,fl-I1 z + (cosodRo.Oy/a~) 2, d~ 0 is pitch along ~ with ~7 = 0, R 0 is blunting radius)�9 
With prescribed longitudinal components of the pressure gradient and the shape of the shock wave initial with respect 

to ~ and boundary with respect to ~ the problem was resolved by a difference method [11] developed previously by the authors 

for solving nonlinear markedly interconnected sets of equations of the parabolic type. An implicit difference scheme was used 

of improved approximation accuracy [10], and the Newton method was applied to the nonlinear set of  difference equations. 

A correction system was resolved by trial runs. 

Calculations performed for different grids showed demonstrated reliable results. 
Given in Fig. 1 are the results of calculating shock wave departure with flow spheres of chemically reacting nine- 

component partly ionized air (R 0 = 0.635 cm, M~. = 15.3, Reo. = 1.5"104). Numbers on the curves in Fig. 1 correspond 

to the numbers of  global iterations N. The results obtained are in good agreement with experimental data [12]. The convergence 

rate for global iterations with respect to different parameters for this calculation is illustrated in Fig. 2. Curve 1 relates to 

departure of a shock wave, 2 to a derivative with respect to longitudinal coordinate for departure of  a shock wave, 3 to pressure 

at the body surface, 4 to a derivative with respect to longitudinal coordinate for pressure at the body surface, 5 to a derivative 

with respect to longitudinal coordinate for pressure behind the shock wave, and 6 to convective heat flow towards the body 

surface. It is noted that in order to establish departure and the shape of a shock wave with an accuracy to n = 1% (mean 

square) six to seven global iterations are required although the distribution of convective heat flow towards the surface and 

pressure at it are established after two global iterations. At the same time in order to establish the pressure gradient with respect 

to the longitudinal coordinate ten to twelve global iterations are necessary. 

Presented in Fig. 3 are the results of  calculations for some algebraic models of  the turbulence of  convective heat flows 

Q towards the side surface of a hyperboloid of rotation modelling spatial flow for the spill lines of  Space Shuttle equipment 

[13]. Here z is coordinate along the axis of symmetry, which is dimensionless for the radius of  curvature at the critical point. 

The conditions in the approach stream correspond to a height of  45.3 km for the actual planned trajectory of  entry into the 
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atmosphere of Earth. Turbulence models of Sebechi-Smith, Lotsyanskii, and Kendall (Curves 2-4 respectively) give in the 

region of a developed turbulent flow regime heat flows which agree satisfactory with experimental data [13]. In the transition 

flow region the turbulence models lead to low heat flows which may be explained by high values of viscous underlayer 
thickness prescribed in these models. However, failure to consider the effect a viscous underlayer in the Escudier model (Curve 
1) markedly increases the level of heat flows for all of the flow regimes. Consideration of roughness for the flow surface in 

the Dam turbulence model (Curve 6) reduces the thickness of the viscous undertayer and makes it possible to obtain satisfactory 

agreement of heat flow with experimental data [13] in the transition region. The selection of coefficients in the approximation 
relationship for the ~ickness of the viscous underlayer in the Sovershennyi turbulence model [14] also describes successfully 

zones of transitional and developed turbulent flow regimes (Curve 5). 

Data presented in Fig. 4 are in good agreement with distributed heat flows obtained along the surface with experimental 
data [15] and calculations by other authors [15] (dashed lines) in the case of flow past a long thin cone blunted to a sphere 

(Ro= 1.01 cm, c~ = 5.25 ~ M** = 11, Re** = 3.3.105) with both laminar (open squares) and with turbulent (shaded squares) 
flow regimes. The turbulence model in [14] refmed in [11] is used. 

Given in Fig. 5 is comparison of the levels of ionization in the shock wave with flow past a cone blunted to a sphere 

(R 0 = 15.4 cm, ~ = 9 ~ with the results of measurements provided in [16] for different conditions in an approach flow (curves 
1 and 2 are M** = 25.9,-Re** = 6.28.103 and M**= 28.9, Re** = 1.59-103 respectively). The nature of the d distribution 

obtained for the numerical density of electrons N e is much better than in calculations with us of the Navier-Stokes parabolized 

equations [16] (curves labelled with asterisks) where a seven-component model of air was considered and noncatalytic boundary 

conditions were used charged components. 
We note that the method suggested makes it possible to save markedly on the resources of a computer since in the 

working memory it is only necessary to store the functions sought in two neighboring sections. In addition, several global 

iterations are required for convergence which is an order of magnitude less than the number of global iterations required in 
the standard methods. Here the rate of convergence does not depend on the pitch of the grid in the transverse direction. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

R. T. Davis, "Numerical solutions of the hypersonic viscous shock layer equations," AIAA J., 8, No. 5, 843-851 

(1970). 

G. A. Tirskii, "Theory of hypersonic flow past plane and axisymmetric blunted bodies by viscous gas streams with 

blowing," Nauch. Tr. Inst. Mekhan. Mosk. Gos. Univ. No. 39, 5-38 (1975). 
S. A. Vasil'evskii, G. A. Tirskii, and S. V. Utyuzhnikov, "Numerical method for resolving viscous shock layer 

equations," Dokl. Akad. Nauk SSSR, 290, No. 5, 1058-1061 (1985). 

V. M. Kovenya and N. N. Yanenko, The Splitting Method in Problems of Gas Dynamics [in Russian], Nauka, 

Novosibirsk (1981). 
B. N. Srivastava, M. J. Werle, and R. T. Davis, "Viscous shock-layer solutions for hypersonic spherecones," AIAA 

J., 16, No. 2, 137-144 (1978). 

Yu. V. Glazkov, G. A. Tirskii, and V. G. Shcherbak, "Method for solving parabolized Navier-Stokes equations using 

global iterations," Mat. Modelirovanie, 2, No. 8, 31-41 (1990). 

668 



7. 

8. 

9. 
10. 

11. 

12. 

13. 
14. 

15. 

16. 

V. V. Lunev, Hypersonic Aerodynamics [in Russian], Mashinostroenie, Moscow (1975). 
D. Anderson, J. Tannekhil, and R. Pletcher, Computation Hydromechanics and Heat Exchange, Vol. 2 [Russian 
translation], Mir, Moscow (1990). 
N. S. Bakhvalov, N. P. Zhidkov, and G. N. Kobel'kov, Numerical Methods [in Russian], Nauka, Moscow (1987). 
I. V. Petukhov, "Numerical calculation of two-dimensional flows in a boundary layer," in: Numerical Methods of 
Solving Differential and Integral Equations and Quadrature Equations, Vol. 4 [in Russian], Nauka, Moscow (1964). 
V. L. Kovalev and A. A. Krupnov, "Multicomponent chemically reacting turbulent viscous shock layer at a catalytic 
surface," Izv. Akad. Nauk SSSR, Mekhan. Zhid. Gaz., No. 2, 144-148 (1989). 
G. Candler, "On the computation of shock shapes in nonequilibrium hypersonic flows," Paper/AIAA; N 312, N.Y. 

(1989). 
E. V. Zoby, "Analysis of STS-2 experimental heating rates and transition data," Paper/AIAA; N 822, N.Y. (1982). 
V. D. Sovershennyi and V. A. Aleksin, "Calculation of a boundary layer at profiles with presence of zones of laminar 
and turbulent flow regimes," Izv. Vyssh. Uchebn. Zaved., Aviats. Tekhnika, No. 2, 68-72 (1983). 
M. Hudson, "Evaluation of PNS-heating and hypersonic shock tunnel data on sharp and inclined blunt cones," 

Paper/AIAA; N 310, N.Y. (1989). 
G. Candler and R. W. MacCormak, "The computation of hypersonic ionized flow in chemical and thermal 
nonequilibrium," Paper/AIAA; N 511, N.Y. (1988). 

669 


